Jeśli jesteś właścicielem tej strony, możesz wyłączyć reklamę poniżej zmieniając pakiet na PRO lub VIP w panelu naszego hostingu już od 4zł!
Strony WWWSerwery VPSDomenyHostingDarmowy Hosting CBA.pl

Dodaj nas do zakładek

Galaktyki, Gwiazdy ,Planety

  

Betatron


To akcelerator indukcyjny, rodzaj akceleratora cyklicznego, służący do przyspieszania elektronów.
Pierwszy betatron zbudował Donald William Kerst w 1940 roku – składał się z pierścieniowej komory próżniowej umieszczonej między nabiegunnikami elektromagnesu.
Elektromagnes zasilany jest ze źródła prądu zmiennego. W momencie gdy pole magnetyczne ma małe natężenie do komory wstrzykiwane są wstępnie przyspieszone elektrony, których tor jest zakrzywiany przez pole magnetyczne. W komorze zostają tylko te elektrony które mają prędkość o takiej wartości, że promień ich obiegu jest równy promieniowi komory. Pole magnetyczne wzrasta, w wyniku zjawiska indukcji elektromagnetycznej wzrastające pole wytwarza wirowe pole elektryczne, które przyspiesza elektrony. Jednocześnie rosnące pole magnetyczne utrzymuje elektrony poruszające się z coraz większą prędkością na orbicie o powoli rosnącym promieniu.
Gdy pole magnetyczne dochodzi do maksymalnej wartości, dodatkowy impuls kieruje elektrony na zewnątrz lub do wewnątrz gdzie umieszczony jest wylot lub tarcza. W czasie cyklu przyspieszania elektrony wykonują w akceleratorze setki tysięcy obiegów.
Opisany cykl obejmuje mniej niż 1/4 okresu sinusoidalnie zmiennego napięcia zasilania. W pozostałej części cyklu elektrony nie są przyspieszane. Cykle powtarzają się w takt zmiany prądu zasilającego cewkę elektromagnesu.
Warunkiem utrzymania elektronu na orbicie stabilnej (mieszczącej się w komorze) jest odpowiednie ukształtowanie pola magnetycznego tak by natężenie pola malało przy wzroście promienia. Pole magnetyczne musi spełniać warunek:

gdzie strumień pola magnetycznego przechodzącego przez powierzchnię ograniczoną orbitą o promieniu , natężenie pola magnetycznego na promieniu .
Warunek ten uzyskuje się poprzez odpowiednie ukształtowanie biegunów magnesu, stosowanie materiałów magnetycznych o większej przenikalności magnetycznej bliżej środka komory.
Uzyskiwanie energii przez elektrony w betatronach ogranicza promieniowanie elektronów gdyż krążą po orbitach kołowych. Przy dużych prędkościach wypromieniowanie narasta i powoduje wytrącenie elektronów z orbity stabilnej. By zmniejszyć promieniowanie, które jest proporcjonalne do przyspieszenia (tu dośrodkowego) buduje się betatrony o większej średnicy. Przyspieszając cząstki do prędkości porównywalnych z prędkością światła napotyka się wówczas na problem relatywistyczego wzrostu masy przyspieszanej cząstki, który też sprawia, że przyspieszane cząstki wypadają z akceleratora.
Maksymalne uzyskiwane energie sięgają 300 MeV.
Betatron używany jest w przemyśle i w medycynie jako źródło cząstek lub źródło promieniowania, w fizyce stanowi jedynie urządzenie dydaktyczne. W fizyce jądrowej został wyparty przez akceleratory umożliwiające uzyskanie wyższych energii cząstek szczególnie synchrotrony.