Jeśli jesteś właścicielem tej strony, możesz wyłączyć reklamę poniżej zmieniając pakiet na PRO lub VIP w panelu naszego hostingu już od 4zł!

Dodaj nas do zakładek

Galaktyki, Gwiazdy ,Planety

  

Supernowa

Supernowa

Supernowa – w astronomii termin określający kilka rodzajów kosmicznych eksplozji, które powodują powstanie na niebie niezwykle jasnego obiektu, który już po kilku tygodniach bądź miesiącach staje się niemal niewidoczny. Istnieją dwie możliwe drogi prowadzące do takiego wybuchu: w jądrze masywnej gwiazdy przestały zachodzić reakcje termojądrowe i pozbawiona ciśnienia promieniowania gwiazda zaczyna zapadać się pod własnym ciężarem, lub też biały karzeł tak długo pobierał masę z sąsiedniej gwiazdy, aż przekroczył masę Chandrasekhara, co spowodowało eksplozję termojądrową. W obydwu przypadkach, następująca eksplozja supernowej z ogromną siłą wyrzuca w przestrzeń większość lub całą materię gwiazdy. Utworzona w ten sposób mgławica jest bardzo nietrwała i ulega całkowitemu zniszczeniu już po okresie kilkudziesięciu tysięcy lat, znikając zupełnie bez śladu. Z tego powodu w Drodze Mlecznej znamy obecnie zaledwie 265 pozostałości po supernowych, choć szacunkowa liczba tego rodzaju wybuchów w ciągu ostatnich kilku miliardów lat jest rzędu wielu milionów.

Wybuch wywołuje falę uderzeniową rozchodzącą się w otaczającej przestrzeni, formując mgławicę – pozostałość po supernowej. Znanym przykładem takiego procesu jest pozostałość po SN 1604, przedstawiona na fotografii obok. Eksplozje supernowych są głównym mechanizmem rozprzestrzeniania w kosmosie wszystkich pierwiastków cięższych niż tlen oraz praktycznie jedynym źródłem pierwiastków cięższych od żelaza (powstałych w sposób naturalny). Cały wapń w naszych kościach czy żelazo w hemoglobinie zostały kiedyś wyrzucone w przestrzeń podczas wybuchu supernowej, miliardy lat temu. Supernowe „wyrzuciły” ciężkie pierwiastki w przestrzeń międzygwiezdną, wzbogacając w ten sposób obłoki materii będące miejscem formowania nowych gwiazd. Te gwałtowne procesy zdeterminowały skład chemiczny mgławicy słonecznej, z której 4,5 miliarda lat temu powstał Układ Słoneczny i ostatecznie umożliwiły powstanie na Ziemi życia w takiej postaci, jaką obecnie znamy.

Słowo „nowa” (łac. nova) oznacza nową gwiazdę pojawiającą się na sferze niebieskiej; z kolei przedrostek „super” odróżnia je od używanego na co dzień słowa nowa, oznaczającego także gwiazdę zwiększającą swą jasność, jednak w nieco mniejszym stopniu i z innej przyczyny. Jakkolwiek nieco mylące jest określanie supernowej jako nowej gwiazdy, gdyż w rzeczywistości jest to jej śmierć (lub w najlepszym razie radykalna transformacja w coś zupełnie innego).

Klasyfikacja
Pozostałość po supernowej SN 1987A

Próbując wyjaśnić pochodzenie supernowych, astronomowie podzielili je ze względu na występowanie różnych linii absorpcyjnych w ich widmie. Pierwszym kryterium jest występowanie linii wodoru. Jeśli widmo supernowej zawiera ślady tego pierwiastka zalicza się ją do typu II, w przeciwnym wypadku – do typu I.

Wewnątrz głównych typów wyróżnia się jeszcze kilka podtypów, w zależności od występowania innych linii widmowych, bądź kształtu krzywej blasku:

Typ I – brak linii wodoru
Typ Ia – linie Si II na 615,0 nm
Typ Ib – linie He I na 587,6 nm
Typ Ic – słabe lub brak linii helu

Typ II – obecne linie wodoru
Typ II-P
Typ II-L

Typ Ia
Biały karzeł ściąga na siebie materię z towarzyszącego czerwonego olbrzyma. Wizja artysty.
Schemat budowy supernowej

Information icon.svg Osobny artykuł: supernowa typu Ia.

W widmach supernowych typu Ia nie ma śladów helu, w pobliżu maksimum jasności znajdują się tam natomiast linie absorpcyjne krzemu. Istnieją dwie teorie tłumaczące powstawanie tego typu supernowych – jedna z nich zakłada, że biały karzeł ściąga na siebie materię z towarzyszącej mu większej gwiazdy, według drugiej supernowe wybuchają w wyniku kolizji dwóch białych karłów.
Typ Ib i Ic

W początkowym okresie, widma supernowych typów Ib i Ic nie wykazują linii wodoru, ani silnej absorpcji krzemu w okolicach 615 nanometra. Eksplozje tego rodzaju, podobne do supernowych II typu są zapewne powodowane przez masywne gwiazdy, które przed wyczerpaniem całego paliwa jądrowego zdążyły utracić większość warstw zewnętrznych wskutek silnego wiatru gwiazdowego lub interakcji z towarzyszem. Supernowe typu Ib są przypuszczalnie efektem zapadania się gwiazdy Wolfa-Rayeta.
Typ II

Wybuch supernowej typu II jest etapem ewolucji gwiazd o masie większej niż 9 mas Słońca. Masywne gwiazdy przed przejściem w etap supernowej mają strukturę warstwową – jądro złożone z żelaza, kobaltu i niklu, otoczone coraz to lżejszymi pierwiastkami: krzemem, neonem, węglem, tlenem, helem i w końcu na zewnątrz wodorem. Gdy żelazowe jądro osiągnie masę większa niż około 1,4 masy Słońca (czyli osiągnie granicę Chandrasekhara), to zaczyna się zapadać wskutek działania sił grawitacji. Ponieważ nuklidy Fe, Co, Ni są bardzo stabilne (zobacz energia wiązania na nukleon), nie dochodzi już do żadnych reakcji termojądrowych. Wskutek kolapsu grawitacyjnego jądra atomowe są rozbijane na pojedyncze nukleony, a następnie elektrony są wtłaczane do protonów, w wyniku czego powstaje materia neutronowa i neutrina. Jednocześnie zewnętrzne warstwy opadają z dużą szybkością na sprężyste jądro i ulegają gwałtownemu odbiciu na zewnątrz. Właśnie ten moment jest nazywany wybuchem supernowej. Wskutek szybkiej zmiany wymiarów (odbite warstwy materii poruszają się bardzo szybko) gwiazda bardzo jasno świeci. Gwiazda, w zależności od swojej początkowej masy, po wybuchu supernowej kończy jako gwiazda neutronowa lub czarna dziura (zobacz granica Tolmana-Oppenheimera-Volkoffa). Podczas wybuchu supernowej, wskutek reakcji pomiędzy jądrami pierwiastków z powłok opadających na jądro, z udziałem neutronów i neutrinami w jądrze, są syntetyzowane pierwiastki o liczbie atomowej większej niż 28 (m.in. w procesie szybkiego wychwytu neutronów), które następnie podczas wybuchu są rozsiewane do innych zakątków Wszechświata.


Energia wybuchu dociera do Ziemi w postaci wzmożonego promieniowania kosmicznego. Promieniowanie to powoduje aktywację jąder atomowych, między innymi powstawanie jąder węgla 14C. Mierząc zawartość pozostałości tego izotopu w próbkach datowanych bezwzględnie, można ocenić, kiedy miała miejsce ekspozycja na to promieniowanie, jak długo trwało i jakim zmianom ulegało. Na tej podstawie można obliczyć czas wybuchu i odległość supernowej od Ziemi. Przy założeniu prawdziwości teorii świec standardowych, gwałtowne zwiększenie koncentracji 14C wskazuje, że w ciągu ostatnich 50 tys. lat miały miejsce następujące bliskie wybuchy

Czas w tys. lat Odległość w parsekach
44 110
37 180
32 160
22 250


Znaczenie supernowych

Supernowe wzbogacają przestrzeń międzygwiazdową o rozmaite pierwiastki, które nie mogłyby w większych ilościach powstać w żadnych innych okolicznościach. Tak więc każde pokolenie gwiazd posiada nieco inny skład chemiczny, począwszy od pierwotnej, prawie czystej mieszaniny wodoru i helu, po kompozycje coraz bardziej bogate w cięższe pierwiastki. Różnice w składzie chemicznym wywierają duży wpływ na całe życie gwiazdy i mogą mieć decydujące znaczenie w kwestii powstania wokół niej planet.