Jeśli jesteś właścicielem tej strony, możesz wyłączyć reklamę poniżej zmieniając pakiet na PRO lub VIP w panelu naszego hostingu już od 4zł!

Dodaj nas do zakładek

Galaktyki, Gwiazdy ,Planety

  

Kwazicząstka

Kwazicząstka

Kwazicząstka (łac. quasi – niby) – sposób opisu obiektów fizycznych poprzez przybliżenie skomplikowanego układu teoretyczną cząstką, której własności w pewnym zakresie opisują wyjściowy układ.

Kwazicząstki wprowadza się po to, by znacznie uprościć rachunki oraz operować na prostszych obiektach. Przykładem może być układ wielu oddziałujących ze sobą cząstek, które zastępuje się w przybliżeniu równoważnym układem nieoddziałujących kwazicząstek (np. złożone fermiony w kwantowym ułamkowym efekcie Halla, elektron w krysztale, polaron, dziura w półprzewodniku).

Charakterystyczną cechą kwazicząstek jest renormalizacja własności cząstek wyjściowych i zastąpienie ich wartościami efektywnymi. Do przykładów renormalizowanych własności należy masa, ładunek, spin. Inną charakterystyczną cechą kwazicząstki jest czas życia zależny od parametrów układu i będący zwykle w przypadku kwazicząstek wartością skończoną.

Nie wszystkie własności skomplikowanych układów można przybliżać poprzez kwazicząstki, szczególne trudności sprawiają zjawiska nieperturbacyjne, w których własności układu nie mogą zostać wyliczone poprzez metody rachunku zaburzeń. Mówiąc inaczej, nawet rozwiązanie zagadnienia w nieskończonym rzędzie rachunku zaburzeń (gdyby było technicznie wykonalne) nie dałoby efektów zgodnych z rozwiązaniem ścisłym.R óżnych kwazicząstek jest nieskończenie wiele, tzn. tyle ile różnych modeli i zjawisk, w których można zastosować metody kwazicząstkowe. Do podstawowych typów kwazicząstek można zaliczyć:

fermiony o zrenormalizowanych własnościach w wyniku oddziaływania z ośrodkiem (polaron)
układy oddziałujących fermionów (pary Coopera, złożone fermiony)
bozonowe wzbudzenia układu fermionów (fonony)
eniony (z ang. anyons) nie będące bozonami ani fermionami

Same kwazicząstki mogą przejawiać fermionowe, bądź bozonowe własności. Na przykład polaron (efekt oddziaływania elektronu z fononami optycznymi podłużnymi) posiada fermionowe własności. Ekscyton (stan związany elektronu i dziury) jako złożenie dwóch fermionów przejawia własności bozonowe. Pamiętać należy jednak, że w ogólności kwazicząstki stanowią przybliżenie i ich własności fermionowe bądź bozonowe nie będą ściśle spełnione. Wspomniany wcześniej ekscyton przy dużej koncentracji par przestaje mieć bozonowe własności. Komutator operatorów kreacji i anihilacji par cząstka dziura ma bozonowe własności z dokładnością do czynnika proporcjonalnego do gęstości par. Przy dużej koncentracji nośników odchylenie od bozonowej relacji staje się duże.

Zastąpienie skomplikowanego układu swobodnymi cząstkami upraszcza hamiltonian. Używając języka kwazicząstek możemy wyrażać bardziej skomplikowane oddziaływania i wprowadzać nowe kwazicząstki. Procedura ta jest bardzo często spotykana. Wśród przykładów można wymienić

ekscyton – składa się z
elektronu w krysztale – kwazicząstka o zrenormalizowanej masie efektywnej
dziury – kwazicząstka wprowadzona jako brak elektronu w paśmie walencyjnym

polaron – składa się z
elektronu w krysztale – kwazicząstka o zrenormalizowanej masie efektywnej
fononów – kwazicząstek opisujących drgania sieci krystalicznej