Jeśli jesteś właścicielem tej strony, możesz wyłączyć reklamę poniżej zmieniając pakiet na PRO lub VIP w panelu naszego hostingu już od 4zł!

Dodaj nas do zakładek

Galaktyki, Gwiazdy ,Planety

  

Mechanika Kwantowa i to co z nią związane


Film według mnie najlepiej opisujący piękno tej nauki
po kliknięciu w tytuł lub obejrzyj na you tube więcej części
 

Mechanika kwantowa (teoria kwantów) – teoria praw ruchu obiektów świata mikroskopowego. Poszerza zakres mechaniki na odległości czasoprzestrzenne i energie, dla których przewidywania mechaniki klasycznej nie sprawdzały się. Opisuje przede wszystkim obiekty o bardzo małych masach i rozmiarach - np. atom, cząstki elementarne itp. Jej granicą dla średnich rozmiarów lub średnich energii czy pędów jest mechanika klasyczna.

Dla zjawisk zachodzących w mikroświecie konieczne jest stosowanie mechaniki kwantowej, gdyż mechanika klasyczna nie daje poprawnego opisu tych zjawisk. Jest to jednak teoria znacznie bardziej złożona matematycznie i pojęciowo.

Zasady mechaniki kwantowej są obecnie paradygmatem fizyki i chemii. Wraz ze szczególną teorią względności mechanika kwantowa jest podstawą opisu wszelkich zjawisk fizycznych.

Nierelatywistyczna mechanika kwantowa pozostaje słuszna, dopóki stosuje się ją w odniesieniu do ciał poruszających się z prędkościami dużo mniejszymi od prędkości światła. Jej uogólnieniem próbowała być relatywistyczna mechanika kwantowa, ale ostatecznie okazało się, że takie uogólnienie musi mieć postać kwantowej teorii pola.

Mechanika kwantowa została stworzona niezależnie przez Wernera Heisenberga i Erwina Schrödingera w 1925 r. Została szybko rozwinięta dzięki pracom Maxa Borna i Paula Diraca. Jeszcze przed powstaniem ostatecznej wersji mechaniki kwantowej prekursorskie prace teoretyczne stworzyli Albert Einstein i Niels Bohr. Jej wersję obejmującą teorię pól kwantowych doprowadzili do ostatecznej formy Richard Feynman i inni.

           Mechanika klasyczna a mechanika kwantowa

Ogólną wskazówką, którą się kiedyś posługiwano, aby rozsądzić, czy należy użyć mechaniki kwantowej, by uniknąć znaczących błędów w opisie zjawisk, jest porównanie długości fali de Broglie'a z wielkością analizowanego układu fizycznego. Jeśli są to wielkości zbliżone do siebie, zastosowanie mechaniki klasycznej da najpewniej nieprawidłowe wyniki. Obecnie, z racji postępu doświadczalnego, znane jest wiele zjawisk kwantowych, do których ta prosta reguła nie obowiązuje.

Zasady mechaniki kwantowej określają sposób patrzenia na wszelkie zjawiska fizyczne i chemiczne, także te, których opis prowadzi się przy użyciu mechaniki klasycznej: stara się wówczas wykazać, że jest to klasyczna granica opisu kwantowego. Stanowi ona podstawę badawczą takich działów nauki jak: fizyka materii skondensowanej, chemia kwantowa, fizyka jądrowa, fizyka cząstek elementarnych czy astrofizyka.


            Zjawiska opisywane przez mechanikę kwantową


Obok zjawisk będących inspiracją do budowy mechaniki kwantowej jej wielki sukces wiąże się z prawidłowym opisem następujących zjawisk:

dyfrakcja i interferencja światła i strumieni cząstek (podstawa optyki kwantowej, elektrodynamiki kwantowej);
szczegóły atomowej budowy materii, zwłaszcza struktury elektronowej pierwiastków (podstawa chemii kwantowej, fizyki ciała stałego);
zjawiska rozpraszania i zderzeń w skali atomowej i subatomowej (podstawa fizyki jądrowej, fizyki cząstek elementarnych, kwantowej teorii pola, elektrodynamiki kwantowej, chromodynamiki kwantowej, standardowego modelu oddziaływań fundamentalnych);
mikroskopowego opisu zjawisk transportu (przewodnictwo prądu w metalach i półprzewodnikach);
zjawisk kolektywnych w skali makroskopowej (nadciekłość, nadprzewodnictwo, kondensacja Bosego-Einsteina, magnetyzm).